If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-201x+93=0
a = 16; b = -201; c = +93;
Δ = b2-4ac
Δ = -2012-4·16·93
Δ = 34449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-201)-\sqrt{34449}}{2*16}=\frac{201-\sqrt{34449}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-201)+\sqrt{34449}}{2*16}=\frac{201+\sqrt{34449}}{32} $
| 2x+8x+10x=-100 | | 3/7x+6+6=10 | | 0.5x+1.3=0.9x-0.3 | | 4=3a-14; | | (1+x)(1+2x)(1+3x)(1+4x)=0 | | 44=1/28h | | 2x+2/5=0 | | 5-4/x=3x | | 4+2x=32-5x | | 3(x+2)=6(6) | | 11^2x-1=7 | | x^2+7x+118=0 | | 0=80+80t-16t^2 | | 0=80+80t=16t^2 | | 7(x-2)-7=2x+5(-4+x) | | -125-2m2=-179 | | x(x+4)(2x-5)=0 | | 6g-2g=12 | | 9^x=0.576 | | 2=-4(3x+2)+13x= | | 4(3n-2)=28 | | L75=3(-10t-3)+6t | | 7(2n+1)=7(6n+2)+2 | | 25*5x-50x=450 | | w-3/10=2w/6w+4 | | 3-4(3x-2)=-7 | | 2/3x=-34 | | 180-3x+x+180-2x-72=180 | | 3(2x-6)=6x+12 | | 8y-8=-14 | | 3^x+2+9^x+1=180 | | 4p^2-12p=0 |